热点新闻
  • 以赛代练,各
  • 保定理工学
  • 路漫漫其修
  • 及时传达精
  • 开展特色教
您当前位置:中国地质大学长城学院基础课教学部 >> 实践磨砺 >> 浏览文章
优秀的建模论文
栏目名:实践磨砺 时间:2015年11月11日 信息来源:本站原创 点击:

 

 

数学建模优秀论文

 

A__余正刚(公司的最优产销方案)

摘要

本文主要研究的是某企业生产一种轻工艺品公司如何安排生产使公司获利最大的问题。主要方法是利用LINGO9.0软件和MATLAB7.0求一定约束条件下的非线性最优化解。

通过对题目的分析,我们从已知的预测数据中,发现1月到5月之间各具体数据之间存在着一定的递增关系,运用这些递增关系将每月不变成本费用分摊到轻工艺品的标准成本中。

对于第一个问题中的最优产销方案是一个非线性规划问题, 我们以追求利润的最大化为目标,充分考虑了限制轻工艺品生产量的各种因素,借助LINGO9.0求得了最优产销方案如下表所示:

 

半年的最大毛收益

六月末产品剩余量

858760

150

 

关键字:非线性规划   最优产销方案   毛收益最大化


一、符号说明和名词解释

P:月毛利率

S:月销售额

C:月生产总成本

t:月需求量

x:解雇员工人数

z:招聘员工人数

y:上月剩余产品量

h:月加班时间

q:促销月毛利益

e:促销月后两个月利益

 

二、  基本假设

1.轻工艺品的销售价为240元,不随市场波动。在现有的营销策略下,每月产品的需求量与年初对上半年6个月的产品需求预测量相同,每个月的销售独立且保持稳定,无月份联系。

2.每个月的产品数目是独立的,各个月之间是离散的。

3.该公司对纯收入所得税的税率保持不变。

4.该公司追求每月毛利益的最大化,而无需计算税后纯收入即先不考虑销售行政过程中的费用以及所得税。.

5.公司的员工按时上下班且所有工人每月工作时间相同,社会声誉稳定。

 

三、  问题的提出与分析

3.1问题的提出

某企业生产轻工艺品,在现有的营销策略下生产的产品按照年初前六个月的出售预测量售出。当前的市场情况是:产品由某些工人生产,这些人的生产能力有限且一定;员工可以解雇或者招聘,可以加班但每人月加班时间不超过15小时;产品的销售价格为240元/件,原材料成本为100元/件;不足的产品需要增加每件月20元的缺货损失或可以以每件200元的价钱外包加工。根据月初对产品的预测需求量,产品的销售为平均每月1028件,此时每个月的生产能力已经处于满荷状态。现在有三种提高公司利润的方案即:1、员工人数不做调整且员工按时上下班,不加班;2、对员工人数进行改动,即招聘或者解雇员工;3、重新规划安排生产,增加员工加班时间;现需要建立模型,讨论这三个方案是否有利于提高公司利润。

 

 

3.2问题的分析

经过我们的分析,认为该问题是一个在一定约束条件下的最优化问题。该企业要制定一套合理的生产计划,需要考虑的约束条件主要来自一下几个方面:其一,企业员工生产能力的限制;其二,市场对于产品需求量的限制;其三,每月剩余产品的库存成本。

分析题意后可知约束条件是非线性的,所以问题是一个非线性规划问题。

企业的毛收益(CROSS MARGIN)P为销售额S和出售产品的总成本C之差,即P=S-C。

 

其中销售额优秀的建模论文。t 为每个月产品需求量。单件出售的成本包括直接材料费用100元/件、直接劳力费用1.6优秀的建模论文12元/件或者1.6优秀的建模论文18元/件、简介劳力费用如解雇工人100元/人、招聘工人培训费50元/人;为使生产量满足需求量,可通过改变工人数量或要求工人加班。

由此可见,本题中问题一的实质就是在现有条件下,如何合理安排工人数量及工作时间,能够使企业寻求到最大利益的多变量非线性约束优化问题。

 

3.3问题二分析

 

对于问题二,我们认为主要通过对三种方案最后总利益的求解对比得出最优产销方案。对于问题中“在计划期内的某个月进行降价促销,当产品价格下降为220/件时,则接下来的两个月中8%的需求会提前到促销月发生。”我们认为接下来两个月中的8%的需求已提前到促销月发生,即这两个月的个需求分别成为原来的92%;在促销方案中员工人数不做调整且员工正常上下班,不考虑外包情况。

 

 

 

四、  模型的建立及求解

 

4.1问题一优化设计数学模型的建立

 

通过对题目的分析,我们将原问题归结为求解有一定约束条件的最优化问题。

 

4.1.1有关生产模式不作调整的讨论

 

此情况下不需考虑员工人数调整带来的解雇、培训费用及员工加班费用,经过简单计算估计此模式下产品生产足以供给预计需求,则不考虑外包加工成本,那么可得公式:

优秀的建模论文

 

 

通过lingo9.0软件进行模拟计算可得如下近似结果:

 

 

 

 

表一:

 

优秀的建模论文项目

 

Time

本月毛利益

本月初库存量

1

94960

200

2

116960

400

3

127960

500

4

163460

550

5

188460

450

6

166460

250

上半年总利益

858260

6月末库存量

150

 

 

通过简单分析可得在该方案下上半年企业总收益为858260,且六月末库存量为150 ,符合约束条件。但是2、3、4、5月初产品库存量明显过大,增加了企业库存成本,该方案明显不是最优产销方案,可以通过调整员工人数来减少库存成本。

 

下图为使用matlab7.0软件分析得到的每个月毛利益占上半年总收益份额饼状图:

 

优秀的建模论文图一:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1.2对员工人数调整模式下的产销分析

 

 

从问题的分析中,我们可知通过对员工人数的调整可以减少月末产品剩余量,此时:优秀的建模论文

 

因尽量避免不必要支出,则每月生产量要满足预计需求量,则约束条件为:优秀的建模论文

 

 

 

通过lingo9.0软件分析得到下表,与表一对比,每个月产品库存量明显减少,则库存成本大幅削减,并且上半年总利率相对增加。但在员工人员增减的过程中增加了间接劳动力成。可以考虑减少员工人数调动,增加员工加班时间改变成本。

 

 

 

表二:

 

优秀的建模论文项目

 

time

解雇员工数

招聘员工数

本月毛利益

本月初库存量

1

2

0

118600

200

2

0

1

130830

200

3

0

0

130880

200

4

0

2

155440

150

5

0

1

167570

150

6

1

0

155440

150

上半年总利益

858760

6月末库存量

150

 

 

 

 

下图为通过matlab7.0软件绘制的每月毛利益对比直方图,通过与每月销量预测表的比较,基本符合每月毛利益增长的趋势。

 

 

 

 

 

图二:

 

优秀的建模论文

 

 

 

 

 

 

4.1.3对增加员工加班时间模式调节的分析

 

通过对以上两种方案的分析可知,该两种方案各有利弊,现尝试在上两种方案的基础上进行优化改进,即改变员工的加班时间,以削减对员工人数调整增加的隐形成本。

此时优秀的建模论文

通过简化分析可得需解雇一名员工,剩余员工按照当月需求量改变加班工时。利用lingo9.0软件可得下表:

 

 

 

 

表三:

 

优秀的建模论文项目

time

解雇员工数

本月加工时长

本月毛利益

本月初库存量


1

1

8

136896

200


2

0

7

125346

355


3

0

8

138796

410


4

0

9

144746

415


5

0

10

166196

270


6

0

6

108646

25


上半年总利益

820626

6月末库存量

-125

 

 

经分析,此时每月库存量又得不到很好的调整,即增加了一大笔库存费用,使得毛利益相对减少。

 

下图为通过matlab7.0软件对每月毛利益对比分析的柱状图,可以很直观的得到1、2、3、4、5、6月的买利益并不是想所给预计表中所给数据那样递增,综合分析可得以上三种方案中方案二最符合最有生产方案。

 

图三:

 


 

 

4.2问题二优化设计数学模型的建立

 

方案一:一月份(淡季)促销,员工数量及生产力不改变,员工不加班。这时有:

 

优秀的建模论文

 

 

 

其中优秀的建模论文优秀的建模论文优秀的建模论文分别为123月预测需求量,式(1)中的t表示456月的预测需求量。通过lingo9.0可得结果如下:

 

表四:

 

优秀的建模论文项目

 

Time

本月毛利益

本月初库存量

1

114560

200

2

97640

220

3

106800

408

4

163460

550

5

188460

450

6

166460

250

上半年总利益

837380

6月末库存量

150

 

 

通过与问题一种方案二作对比可得,在一月份进行促销活动后造成2、3月的预计需求提前,最终导致4、5月产品出现货物囤积,增加了存货成本。上半年总利益较方案4.1.2偏少。

 

下图(图4)为通过表四使用matlab7.0建立的每个月毛利益比例柱状图,对比发现2、3月利益明显出现低迷情况,可见淡季促销会有一定副作用。

 

 

 

 

图4:

 


 

 

方案二:四月份(旺季)促销,员工数量及生产力不改变,员工不加班,由上述分析可知员工生产量足以满足产品预测需求。此时有:

 

优秀的建模论文

 

其中优秀的建模论文优秀的建模论文优秀的建模论文分别为456月预测需求量,式(2)中的t表示456月的预测需求量。通过lingo9.0软件分析可得一下结果:

 

 

 

 

 

表五:

 

优秀的建模论文项目

 

Time

本月毛利益

本月初库存量

1

94960

200

2

116960

400

3

127960

500

4

184980

550

5

138980

134

6

119620

46

上半年总利益

783460

6月末库存量

42

 

通过分析对比可得在四月(旺季)进行促销活动可以明显减少六月末产品库存量,但这种方案使得销售额度大大减少,从而减少了上半年总利益。

 

下图(图5)为中国上表使用matlab7.0软件建立的各月毛利益分布直方图,

 

优秀的建模论文图5 :

 

通过分析发现四月(旺季)进行促销活动同样使5、6月的预测销售量提前到4月发生,但使得上半年总毛利益减少,所以不是最优产销方案。

 

 

 

 

 

五、模型的评价及改进和推广

本题中我们采用了非线性约束条件最优解的思路,通过控制一定变量的方法对可能存在的产销方案进行了分析对比,找出方案4.1.2即“对员工人数进行改动,即招聘或者解雇员工”的方法控制产销成本,得到最大化利益。

在分析的过程中我们使用lingo9.0和matlab7.0软件,详细代码见附录。

5.1 模型的优缺点

从上面的模型的建立与求解分析中,我们建立的模型主要的优点是:

1)  采用“从整体到局部再回到整体的分析问题的方法,首先,从整体上分析问题的实质,确定出约束生产计划的主要因素,然后,就每个月产品生产中控制标准成本的约束条件,建立初步优化模型,对每个月获利最大的生产计划初步定位,最后从宏观角度上再对该企业六个月总的生产计划进行合理的安排,从而使该企业六个月内获得的总利润最大。

2)  方便、直观、实用,所涉及到的数学原理和计算以及概念都较为简单明了,易于在计算机上实现及推广;另外,程序运行时间很短,算法稳定,准确性高,容量大,逻辑性严格,计算速度快,具有较强的说服力和适应能力,有利于实际应用中的管理者决策。

但是也有一些需改进的缺点:由于约束条件对数据的要求比较严格,因而模型用到的某些数据可能是不现实的,从而使模型得到一些不太理想的结果;由于某些式子存在非线性的关系,所以其算法的运算量较大。

5.2 模型的改进:

我们在考虑公司现有条件下的最大毛利润时,是基于一条很重要的假设,即该企业每个月的生产量总能满足预计销售量,即暂不考虑缺货损失。这样做大大降低了模型建立的难度。

 

如果存在失误恳请老师评委指正。

 

 

 

 


 

附件:

 

程序源代码以及结果:

 

 

方案一的代码:

函数是: max=240*1300-12*12*160-10*y-100*1200;

其中某一月的代码

max=240*1300-12*12*160-10*y-100*1200;

求得这个月的最大毛利益结果:

   Global optimal solution found.

   Objective value:                              94960.00

   Total solver iterations:                             0

 

 

                            Row    Slack or Surplus      Dual Price

                              1        94960.00            1.000000

这只是第一个月的最大毛利益其他几个月的毛利益只要将前一个月的库存量代入进去同样可以得到相应的值(即上面表格中的值).

 

 

 

方案二的代码:

   函数是:240*x2*100-100*x-x2*12*160-150*10-50*x1-100*100*x2;

其中某一个月的代码

max=240*x2*100-100*x-x2*12*160-150*10-50*x1-100*100*x2;

x2=14-x+x1;

@bnd(11,x2,13);

@bnd(0,x,5);

@bnd(0,x1,5);

z=100*x2;

@gin(x);

@gin(x1);

@gin(x2);

求得这个月的最大毛利益结果:

   Global optimal solution found.

   Objective value:                              155440.0

   Extended solver steps:                               0

   Total solver iterations:                             0

 

 

                       Variable           Value        Reduced Cost

                             X2        13.00000           -12080.00

                              X        1.000000            100.0000

                             X1        0.000000            50.00000

                              Z        1300.000            0.000000

 

                            Row    Slack or Surplus      Dual Price

                              1        155440.0            1.000000

                              2        0.000000            0.000000

                              3        0.000000            0.000000

其他几个月的代码一样只要将库存量的值代进去就可以求出相应的值(即上面表格中的值).

 

 

 

 

方案三的代码:

函数是: 240*z-100*1-12*160*(12-1)-10*y-h*18*(12-1)-100*z;

其中某一个月的代码

z=(12-1)*(100+h/1.6);

@bnd(800,z,1400);

@bnd(0,h,15);

max=240*z-100*1-12*160*(12-1)-10*410-h*18*(12-1)-100*z;

@gin(z);

@gin(h);

求得这个月的最大毛利益结果:

   Global optimal solution found.

   Objective value:                              134796.0

   Extended solver steps:                               0

   Total solver iterations:                             1

 

 

                       Variable           Value        Reduced Cost

                              Z        1155.000           -140.0000

                              H        8.000000            198.0000

 

                            Row    Slack or Surplus      Dual Price

                              1        0.000000            0.000000

                              2        134796.0            1.000000

其他几个月的代码一样只要将库存量的值代进去就可以求出相应的值(即上面表格中的值).

 

 

 

 

 

 

 

 

 

七,参考文献:

[1]胡适耕 施保昌    《最优化原理》        华中理工大学出版社

[2]陈永春     MATLAB  M语言高级编程》   清华大学出版社

[3]谢金星《优化模型与LINDO\LINGO软件应用》  清华大学 

 

 


上一篇:房地产发展问题
下一篇:英语-翻译练习三篇
版权所有 中国地质大学长城学院基础课教学部 地址:河北省保定市南二环路1689号 邮编:071000
Copyright @ All rights Reserved, www.cuggw.com